Searching the predecessor of the merging galaxy

On a clear night in 1785, William Herschel used his own telescope to observe as usual. The difference is that this night he found a very unusual celestial object in Corvus (the Antennae Galaxy, Fig. 1). Since then, such kind of celestial objects, called the merging galaxies, have fascinated countless astronomers. How is it formed? How does it evolve? These questions are hot topics in astronomy today.


Fig.1. Antennae Galaxy. This merging galaxy is first discovered by William Herschel (Credit: Hubble Space Telescope, NASA)

 

Nowadays, more than 200 years later, scientists have been able to reproduce the formation process of the merging galaxies with numerical simulations. Because of the gravitational attraction, two galaxies would first approach each other, which are observed as a galaxy pair in this phase. Then, the violent collision process leads to dramatic changes on the shapes of the galaxies, thus forming special structures that are significantly different from normal galaxies (see Fig. 2 for an illustration).


Fig. 2: Galaxy merging process from numerical simulation. The time (in billions of years since the beginning of the simulation) is indicated by the number in each picture. (Credit: Max-Planck Institute of Astrophysics)

 

Recently, a research team from Shanghai Astronomical Observatory of the Chinese Academy of Sciences (SHAO) published a new research result on galaxy pairs, which has been accepted by the Astrophysical Journal. In this study, they first constructed the largest galaxy pair sample to date, and then accurately measured the bivariate luminosity function of galaxy pairs. Prof. Shiyin Shen, the corresponding author of this work said, “the bivariate luminosity function tells us a whole story on what is the probability of a galaxy that could be paired with another galaxy at given luminosities, and also gives us hints on how often galaxy merging event occurs in the nearby universe.”

 

As shown by the numerical simulation, the merging timescale of two galaxies is up to 1-2 Giga years. Thus, the overall process of galaxy merging event could not be fully observed by human beings. Using the bivariate luminosity function of galaxy pairs as a statistical approach, this work probably has found the first observational evidence on the galaxy merging timescale. “The global timescale from two gravitational bounded galaxies to final merging depends on the mass configuration of two galaxies”, Shuai Feng, the first author of this study further explained, who is a Ph.D student supervised by Prof. Shiyin Shen, “typically, two massive galaxies with equal mass merge most quickly.”

 

In this work, besides the public astronomical database, the Guoshoujing Telescope (also known as LAMOST), which is located in Xinglong Station of National Astronomical Observatory of Chinese Academy of Sciences (NAOC), has made a significant contribution. For two very close galaxies on the sky like a galaxy pair, a regular multi-fiber spectroscopic survey (like Sloan Digital Sky Survey, also known as SDSS) typically can only target one of the members due to fiber collisions. One of the important observational samples of the LAMOST spectral survey is to supplement the missed main sample galaxies in the SDSS. The combination of the two surveys constitutes the largest spectroscopic identified galaxy pair sample so far, thus providing the foundation of this innovative statistical study.

 

Fig. 3: An example of the spectroscopic observation of a galaxy pair. The spectroscopic observations of two very close galaxies were completed by the Sloan Digital Sky Survey (blue) and the LAMOST spectral survey (red) respectively. Only by obtaining the spectroscopic distances of two galaxies can we finally identify whether two galaxies are a genuine pair or accidentally caused by projection effect.

 

Online link: https://arxiv.org/abs/1905.07276

Related accessories
Related documents
Searching the predecessor of the merging galaxy
More Than a Thousand Carbon Stars Discovered in LAMOST DR4
Chinese telescope collects more than 11 mln spectra
LAMOST Released its Seventh Data (DR7) to the Public
LAMOST Released its Fourth Data(DR4)to the Public
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
LAMOST Released its Seventh Data (DR7) to the Public
Chinese astronomers discover nearly 600 high-velocity stars
Chinese telescope collects more than 11 mln spectra
Chinese astronomers discover nearly 600 high-velocity stars
Chinese astronomers discovered 591 high velocity stars from LAMOST and Gaia
LAMOST Released its Sixth Data (DR6) internationally
Chinese astronomers discovered 591 high velocity stars from LAMOST and Gaia
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
LAMOST Released its Fourth Data(DR4)to the Public
First Result of LAMOST High-Resolution Spectroscopy
Researchers estimated ages and metallicities of M31 star clusters from LAMOST DR6
LAMOST Released its DR8 Data
Researchers estimated ages and metallicities of M31 star clusters from LAMOST DR6
LAMOST Released its Sixth Data (DR6) internationally
LAMOST-Kepler/K2 Survey announced the first light result
LAMOST-Kepler/K2 Survey announced the first light result
More Than a Thousand Carbon Stars Discovered in LAMOST DR4
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
LAMOST released its Seventh Data (DR7) internationally
LAMOST Released its DR8 Data
Exceeding 20 million: LAMOST Released its DR10 Data
LAMOST Released its Eighth Data (DR8) Internationally
Chinese astronomer discovers fastest rotating star in Milky Way
Chinese astronomer discovers fastest rotating star in Milky Way
LAMOST discovery of 135 new O-type stars
Correlation between planet occurrence and stellar dynamics discovered via LAMOST-Gaia data
Findings refine knowledge of galaxy
Chinese researchers constructed a largest lithium-rich giant sample based on the LAMOST data
Discovery: New Moving Group in the Local Arm of the Milky Way
Discovery of Two Nearby Young Stellar Associations in the Milky Way
LAMOST view of the temporal variability of stellar activity in young late-type stars
Chinese researchers constructed a largest lithium-rich giant sample based on the LAMOST data
LAMOST view of the temporal variability of stellar activity in young late-type stars
China and Europe together launch ESASky in Chinese
Discovery of Two Nearby Young Stellar Associations in the Milky Way
LAMOST: Expanding the Sample of Chemically Peculiar Stars
LAMOST discovers new type of compact binary star
A wobbly and flared Milky Way disk revealed with LAMOST-Gaia data
LAMOST helps Gaia to achieve mmag precision in photometry
First Investigation of the Local Properties of Sagittarius Stream with LAMOST Data
LAMOST helps to determine the parameters of 300,000 M dwarfs
The Blazing Sky: LAMOST Observations Reveal Nature of Unknown Gamma-ray Sources
First Investigation of the Local Properties of Sagittarius Stream with LAMOST Data
China and Europe together launch ESASky in Chinese
Discovery: New Moving Group in the Local Arm of the Milky Way
Planetary Census "Through" Time and Space Aided by LAMOST
LAMOST reveals the secret of stellar rotation of hot stars
LAMOST Data Reveals Alpha-rich "Young" Stars are Actually NOT Young
LAMOST helps to propose new method searching for clusters in Andromeda galaxy
Discovery of a Pre-ELM WD Binary by Using LAMOST
Chinese astronomers find galactic "fruit, vegetable garden" outside Milky Way
Extragalactic fruit and vegetable garden: compact galaxies discovered by LAMOST
Stellar Populations of Galaxies in the LAMOST Spectral Survey
Copyright © National Astronomical Observatories, Chinese Academy of Sciences
Address: 20A Datun Road, Chaoyang District, Beijing, China code: 100012
Tel: 010-64888708 E-mail: naoc@nao.cas.cn