LAMOST-Kepler/K2 Survey announced the first light result

An international team led by Prof. Jian-Ning Fu and Dr. Weikai Zong, from Beijing Normal University, published the first light result of medium-resolution spectroscopic observations, which is undertaken by the LAMOST-Kepler/K2 Survey. This result demonstrates that the medium-resolution spectrographs, equipped on LAMOST, perform to the designed expectation. The article is published this November online in The Astrophysical Journal Supplement Series.

 

Fig.1. Kepler telescope (Credit: NASA)

 
The LAMOST-Kepler/K2 Survey was launched based on the success of the LAMOST-Kepler project, a low-resolution spectroscopic survey that consecutive performed since 2011. Different from LAMOST-Kepler project, the LAMOST-Kepler/K2 Survey aims to collect time-series spectroscopies with medium-resolution on about 55,000 stars distributed on Kepler and K2 campaigns, with higher priority given to the targets with available Kepler photometry. Each of those input targets will be visited about 60 times during the period from September 2018 to June 2023. This project is allocated with one sixth of the entire time within the LAMOST medium-resolution observations.

 
From May 2018 to June 2019, a total of thirteen LAMOST-Kepler/K2 Survey footprints have been visited by LAMOST, and obtained about 370,000 high-quality spectra of 28,000 stars. The internal uncertainties for the effective temperature, surface gravity, metallicity and radial velocity are 80 K,0.08 dex, 0.05 dex and 1km/s when the signal to noise ratio equals to 20, respectively, which suggests that the performance of LAMOST medium-resolution spectrographs meet the designed expectation. The external comparisons with GAIA and APOGEE show that LAMOST stellar atmospheric parameters have a good linear relationship, which indicates the quality of LAMOST medium-resolution spectra is reliable.

 

 

Fig.2. The LAMOST-Kepler/K2 Survey targets distributed on the Kepler and K2 campaigns (Credit: Weikai Zong)

 
The LAMOST-Kepler/K2 Survey is the first project dedicated to obtaining time series of spectra by using the LAMOST medium-resolution spectrographs, pointing towards the Kepler/K2 fields. These spectra will be very important for many scientific goals, including the discovery of new binaries or even the brown dwarfs, the study of oscillation dynamics for large-amplitude pulsators and the investigation of the variability of stellar activity.

 
This paper can be accessed at https://ui.adsabs.harvard.edu/abs/2020ApJS..251...15Z/abstract

Related accessories
Related documents
LAMOST-Kepler/K2 Survey announced the first light result
More Than a Thousand Carbon Stars Discovered in LAMOST DR4
Chinese telescope collects more than 11 mln spectra
LAMOST Released its Seventh Data (DR7) to the Public
LAMOST Released its Fourth Data(DR4)to the Public
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
Searching the predecessor of the merging galaxy
LAMOST Released its Seventh Data (DR7) to the Public
Searching the predecessor of the merging galaxy
Chinese astronomers discover nearly 600 high-velocity stars
Chinese telescope collects more than 11 mln spectra
Chinese astronomers discover nearly 600 high-velocity stars
Chinese astronomers discovered 591 high velocity stars from LAMOST and Gaia
LAMOST Released its Sixth Data (DR6) internationally
Chinese astronomers discovered 591 high velocity stars from LAMOST and Gaia
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
LAMOST Released its Fourth Data(DR4)to the Public
First Result of LAMOST High-Resolution Spectroscopy
Researchers estimated ages and metallicities of M31 star clusters from LAMOST DR6
LAMOST Released its DR8 Data
Researchers estimated ages and metallicities of M31 star clusters from LAMOST DR6
LAMOST Released its Sixth Data (DR6) internationally
More Than a Thousand Carbon Stars Discovered in LAMOST DR4
DR6: LAMOST Spectra Entered the Era of Tens of Millions.
LAMOST released its Seventh Data (DR7) internationally
LAMOST Released its DR8 Data
Exceeding 20 million: LAMOST Released its DR10 Data
LAMOST Released its Eighth Data (DR8) Internationally
Chinese astronomer discovers fastest rotating star in Milky Way
Chinese astronomer discovers fastest rotating star in Milky Way
LAMOST discovery of 135 new O-type stars
Correlation between planet occurrence and stellar dynamics discovered via LAMOST-Gaia data
Findings refine knowledge of galaxy
Chinese researchers constructed a largest lithium-rich giant sample based on the LAMOST data
Discovery: New Moving Group in the Local Arm of the Milky Way
Discovery of Two Nearby Young Stellar Associations in the Milky Way
LAMOST view of the temporal variability of stellar activity in young late-type stars
Chinese researchers constructed a largest lithium-rich giant sample based on the LAMOST data
LAMOST view of the temporal variability of stellar activity in young late-type stars
China and Europe together launch ESASky in Chinese
Discovery of Two Nearby Young Stellar Associations in the Milky Way
LAMOST: Expanding the Sample of Chemically Peculiar Stars
LAMOST discovers new type of compact binary star
A wobbly and flared Milky Way disk revealed with LAMOST-Gaia data
LAMOST helps Gaia to achieve mmag precision in photometry
First Investigation of the Local Properties of Sagittarius Stream with LAMOST Data
LAMOST helps to determine the parameters of 300,000 M dwarfs
The Blazing Sky: LAMOST Observations Reveal Nature of Unknown Gamma-ray Sources
First Investigation of the Local Properties of Sagittarius Stream with LAMOST Data
China and Europe together launch ESASky in Chinese
Discovery: New Moving Group in the Local Arm of the Milky Way
Planetary Census "Through" Time and Space Aided by LAMOST
LAMOST reveals the secret of stellar rotation of hot stars
LAMOST Data Reveals Alpha-rich "Young" Stars are Actually NOT Young
LAMOST helps to propose new method searching for clusters in Andromeda galaxy
Discovery of a Pre-ELM WD Binary by Using LAMOST
Chinese astronomers find galactic "fruit, vegetable garden" outside Milky Way
Extragalactic fruit and vegetable garden: compact galaxies discovered by LAMOST
Stellar Populations of Galaxies in the LAMOST Spectral Survey
Copyright © National Astronomical Observatories, Chinese Academy of Sciences
Address: 20A Datun Road, Chaoyang District, Beijing, China code: 100012
Tel: 010-64888708 E-mail: naoc@nao.cas.cn